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There is an extensive oxidation chemistry associated with high
oxidation state Ru(lV), Ru(V), and Ru(VI) oxo complexes. It
includes oxidation of phosphines to phosphine oxidsslfides
to sulfoxides’ alcohols to aldehydes and ketorfeand olefin
epoxidatiort: We report here the preparation of a family of novel,
high oxidation state Os(V) hydrazido complexes, which have a
related redox chemistry and reactivity, but based on aNDs
interaction rather than the RtD interaction in the oxo complexes.
High oxidation state hydrazido complexes have also been
proposed as key intermediates in biologicahd abiologicél
nitrogen fixation.

The salttrans[Os"'(tpy)(CI)(N)](PFe)” (1, tpy = 2,2:6',2"'-

terpyridine) undergoes rapid reactions with the secondary amines,

morpholine (HN(CH)40) and piperidine (HN(CkE4CHy), in CHs-
CN under argon to give a precipitatetadins, transf(tpy)(Cl),0s'-
(N2)OS'(Cl),(tpy)]® and a brown solution. Evaporation of the
solution to dryness and recrystallization from §HN/ELO give
the brown solidtrans[Os"(tpy)(Cl)2(NNRy)](PFs) (NR, = mor-
pholide,2a; NR, = piperidide,2b), by the net reaction in eq4l.
There is an equivalent reactivity between [@om)(CI)(N)]-
(PR) (3, tpm = tris(1-pyrazolyl)methane) and morpholine. The
reaction product, [O4tpm)(CI(NNRy)]" (NR, = morpholide,
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Figure 1. ORTEP diagram (30% ellipsoids) and labeling scheme for
the cation in [O¥(tpm)(CI(NNR2)](PFs) (NR, = morpholide, 4a).
Important features: Os(EN(1) 1.909(8) A, N(1}N(2) 1.321(12) A,
Os(1)-Cl(1) 2.3872(24) A, Os(BHCl(2) 2.4036(22) A, Os(EHyN(11)
2.046(7) A, Os(13N(21) 2.075(7) A, Os(EyN(31) 2.064(8) A,00s-
(2)—(N1)-N(2) 134.9(6).

2 trans[0s”' (tpy)(CI),(N)](PF,) + 2 HNR, —
trans[0s’ (tpy)(Cl),(NNR,)](PF,) +
1, trans, trans[(tpy)(Cl),08' (N,)Os' (Cl),(tpy)] + H,NR, "
1)

43), has been isolated and characterized by X-ray crystallography
(Figure 1)!° The structure shows that the distorted octahedral
arrangement of ligands around the Os atom in the parent nitrido
complex is retained in the hydrazido product. The-Qigtpm)
bond lengths range from 2.046(7) to 2.075(7) A with the longest
Os—N bond trans to the hydrazido ligand. The-@¢(hydrazido)
bond length is rather short at 1.909(8) A, the NfN(2) bond
length is 1.321(12) A, an@lOs—N(1)—N(2) is 134.9(6). These
features point to &ranseffect by the hydrazido ligand and ©s
N(hydrazido) multiple bonding. There are structural similarities
with the Os(IV) hydrazido complex, [Otpy)(bpy)(NNR)]?"
(NRz = morpholide)!!

These complexes have an extensive redox chemistry2&or
in 0.1 M TBAH/CH:CN (TBAH = [N(n-C4Ho)4](PFs)), chemi-
cally reversible waves appear for an Os(VI/V) coupleEgt =
+0.98 V, for Os(V/IV) atE;, = 0.00 V, and for Os(IV/III) at
Ei» = —0.79 V versus SSCE, Figure 2. A pH-dependence study
of 2ain 1:1 (v/v) HLO:CH;CN mixtures (0.1 M TBAH) reveals
that the Os(VI/V) couple is pH-independent from pH 0.50 to pH
7.78 withE;;, = +0.81 V versus SSCE. The Os(V/IV) couple is
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o5 (NNR2)]?* (NR, = morpholide) reacts with benzyl alcohol to give
trans[Os’(tpy)(CI)2(NNRy)]* and benzaldehyde. The latter was
identified by GC-MS. The net reaction is

2 trans[0s”' (tpy)(Cl),(NN(CH,) ,0)]*" + PhCHOH —
2 trans[0s’ (tpy)(CI),(NN(CH,) ,0)]*" + PhCHO+ 2 H"
(5)

It is analogous to the oxidation of benzyl alcohol byR&0 32

; 116 112 0i8 014 (I] -0‘.4 -(;.8 —1‘.2
E (volts) vs. SSCE
Figure 2. Cyclic voltammogram otrans[Os"(tpy)(Cl)2(NNR)](PFs)
(NR, = morpholide 2a) in CH,CN—0.1 M TBAH versus SSCE, showing 2 [RU" (bpy),(O)(py)l"” + PhCHOH —

chemically reversible waves for the Os(VI/V), Os(V/IV), and Os(IV/III) ] 2+
Couploe e (Bt E/2) 2 [Ru" (bpy),(OH)(py)[F" + PhCHO (6)

pH-dependent from pH 0.50 to pH 3.21 and pH-independent at The kinetics of the reaction in eq 5 are first order in both PRCH
higher pH values (Figure 1 in the Supporting Informati&rfjrom OH andtrans[Os"(tpy)(Cl)2(NN(CH,),0)1** with k(25 °C, CH;-

these data, I§, = 3.20+ 0.04 for the equilibrium in eq 2. CN) = (1.80+ 0.07) x 10 M1 s7%. For the reaction in eq 6,
k(25°C, 0.1 M HCIQ) = 2.4 Mt sL,
trans[Os" (tpy) (CI),(N(H)NR,)] © = RuV=0 is reduced by hydroquinone {&),

trans[0s" (tpy)(C),(NNRy)] + H" (2) [RU" (bpy), (oY) O)F" + H,Q—

Further, irreversible multielectron, multiproton reduction of [Ru"(bpy)z(py)(OHz)]2+ +Q (7)
Os(V) occurs fromkg, = —0.45 V to E, = —0.87 V versus
SSCE from pH 0 to pH 8 to giveans[Os'(tpy)(Cl)2(NHz)] as with k(20 °C) = (1.111+ 0.010) x 10° M~* s'1in H,O (pH
shown by coulometryr(= 3) and the appearance of a charac- 116+ 0.02,x = 0.1 M) andAG® = —0.87 eV5 Similarly, but
teristic wave for the ammine produdy(Ill/ll) = —0.18 V%2 iy reverse, O is oxidized by quinone to OS(AG® = —0.045
By analogy with earlier results on the reduction of {@py)- eV) in a reaction first order in each. From measurements with
(bpy)(NNR)]*",™ 3-electron, 2-proton reduction at pH 10.5  [q]from 3.51x 10°5t0 1.75x 1074 M, k(25 °C) = 55.1+ 1.7
occurs aEp .= —1.00 V presumably to give a hydrazine complex -1 ¢1in 1:1 (vIv) CHCN:H;0 (pH 1.0,4 = 0.1 M).
which is, as yet, uncharacterizathns[Os' (tpy)(Cl)2(NH.NRy)].
It is pseudostable and reoxidizedEt, = 0.25 V to givetrans v +
[0sV (tpy)(C)(NNRy)]. 2 trans[Os” (tpy)(CI),(N(H)N(CH,),0)]" + Q—

The pH-dependent electrochemistry of the Os(V/IV) couple, 2trans[OsV(tpy)(CI)z(NN(CH2)4O)]+ +H,Q (8)

Y + + —
trans{Os (tpy)(C(NNR)]™ +H™ + e — These results are significant in pointing to a parallel between
trans[Os'V(tpy)(CI)z(N(H)NRz)]+ 3) the redox chemistries of R#=0 complexes and this new family
of high oxidation state Os hydrazido complexes. Continued
evolution of this chemistry could lead to a new class of=Qis

is shared by typical R{—O les. A le i
' shared by typica couples. Ah exampre based redox reagents for stoichiometric and catalytic organic

. v o L, oxidations.
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cis-[Ru" (OH,)(bpy)(PY)I*" (4b)
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